Carbon fiber composites (also called carbon-fiber reinforced plastics or CFRP) are finding their way into new applications as industries demand materials with ever-higher strength-to-weight ratios, corrosion resistance, and workability. Over the past 60 years, CFRPs have been increasingly used to replace metal in applications where light weight has outsized value (capable of supporting prices that can reach $140/lb), primarily for reducing fuel consumption.
CFRPs face a divided path: well established in high-value sectors such as sporting goods, aerospace, military, and supercars, but priced out of most large-volume markets, particularly the mainstream automotive industries. This will continue until emerging methods and materials speed up CRFP production and bring down the high prices.
In 2020, CFRPs across all applications will comprise a $35 billion market, including $6 billion in automotive CFRPs, according to Lux Research. However, that automotive use will be limited to luxury and racing vehicles. Analyses indicate that large-scale, mainstream CFRP automotive adoption before 2020 is unlikely. But sometime after 2020, the potential volume of CRFP used in cars and trucks could dwarf all other applications, potentially reaching hundreds of billions of dollars.
As a result, most major automotive companies and carbon-fiber producers are forming partnerships, joining consortia, and conducting research to bring automotive CFRPs closer to commercial reality.
Still, the future remains uncertain. Development trends underway in fiber, resin, and composite part production strongly suggest that by the mid-2020s it will be technically and economically feasible for automotive OEMs to make mainstream vehicles that use significant amounts of CFRPs. However, CFRP technology is not the only determinant for whether, when, how, and how much CFRPs will actually be used in cars and trucks. Additional factors inside and outside the industry will strongly affect the pace and penetration. Fundamentally, the push toward automotive composites is predicated on the idea that reducing weight is a cost-efficient method for reducing fuel consumption. (A 10% reduction in weight typically leads to 6% to 8% reduction in fuel consumption.) As a result, vehicles will gradually become lighter as fuel economy standards become stricter. Meanwhile, CFRPs—the materials with the highest specific strength—will be waiting to be used when they get cheaper.
In electric vehicles, such as the BMW i-series, the payoff for reducing weight is even greater due to secondary cost savings from using smaller, lighter batteries. However, alternative methods of reducing gasoline use such as hybridization and using alternative fuels like natural gas, hydrogen, and biofuels, are gradually becoming less costly as their underlying technologies continue to advance. As a result, the idea of a fixed cost at which CFRPs can be adopted must be understood relative to current vehicle designs. By the time CFRPs are inexpensive enough to adopt, the goalposts may have moved, as the price might still not yet be low enough to warrant widespread adoption at that time.
In the long term, megatrend-driven shifts may further reduce the incentive to develop CFRPs for the automotive industry. For example, as global population becomes more urbanized, using cars for personal transportation in the developed world may decrease as people shift to other ways to get around. In addition, individual trips taken in cars will be shorter and undertaken at lower speeds using smaller vehicles. Smaller vehicles are already lighter and more efficient, reducing the value of more lightweight materials. Indeed, some emerging concepts for urban cars are extremely light and do not resemble current passenger vehicles at all. Increasing connectivity could further the trend towards fewer personal cars and trips by car, as it will likely increase telecommuting and online shopping for goods and services, as well. As a result, urbanization might reduce the need for lightweight materials, including CFRPs, in personal transportation.
Current trends still strongly indicate significant automotive adoption of CFRPs in the mid-2020s, and companies throughout the value chain must position themselves to take advantage of the coming shifts. However, those developing these technologies should consider that there could be a limited long-term window for penetrating the automotive industry.